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Positive Knots From Discrete Dynamical Systems
Via Symbolic Dynamics
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A procedure to construct positive knots motivated by symbolic dynamics is given. It
is proved that the corresponding knots have a special type of positive braids, positive
permutation braids. It is proved that the constructed knots are invariant under topological
conjugacy, up to period five, hence they can be used to classify discrete dynamical
systems. An example is given to show that topological conjugacy failed to be an
invariant for closed orbits of period more than five.
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1. INTRODUCTION

Symbolic dynamics (Hao and Zheng, 1998) is a coarse grained description
for periodic and chaotic dynamical systems. In this formulation the exact location
of the point is not important. Only its position relative to the critical point C (i.e.
the point at which f ′(x) = 0). So each point in a trajectory is given a label L or R
according to whether it lies to the left or to the right of C. The trajectory is then
replaced by a sequence of L’s and R’s which can be replaced by zeros and ones.
The space of such sequences � can be made into a metric by the distance

d(s, t) =
∑
i=0

1

2i
|si − ti |; s = (s0, s1, . . . , ), t = (t0, t1, . . .), si, ti ∈ {0, 1}

On this metric space we can define a “symbolic dynamic” by the shift map

σ k(s) = (sk, sk+1, . . .)

In fact the three-dimensional flow of the nonlinear differential equation

ẋ = f (x(t))
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forms a map fλ on the interval I = [C0, CN ] in the poincaré section, with
N − 1 parameters (λ1, λ2, . . . , λN−1) ≡ λ. For each point x ∈ I , there must be
a unique symbolic address A(x) ∈ �N according to the symbol of the set to
which x belongs, x ∈ A(x). The N − 1 critical points and the N subintervals
are numbered in their natural order in symbolic space, I1 < C1 < I2 < C2 <

· · · < IN−1 < CN−1 < IN . For an arbitrary admissible N − 1 multiple sequence
W = C1X1C2X2 . . . CN−1XN−1 = ω1ω2 . . . ω|W |, where |W | is the length of
the sequence W, shifts ϕi(W ) = (Wi+1) = ωi+1ωi + 2 . . . ω|W , i = 1, 2, . . . , |W |
form |W | vertices.

On the set C0 = {ϕi(W )} of vertices, a basic shift matrix is constructed by
the natural shift order ω((W )i , (W )i+1) = 1, which is a simple periodic matrix.
The vertex set C0 can be ordered by a permutation π : Z+ → Z+ which makes
ϕπ(1)(W ) < ϕπ(2)(W ) < · · · < ϕπ(|W |)(W ) hold (Hao and Zheng, 1998). This con-
struction will be related to our work in terms of permutations in symmetric groups.

Also the functions f , σ are conjugate dynamical systems and so we can study
f by analyzing σ . There is a countable infinity of periodic orbits of arbitrary period.
The following convection (Hao and Zheng, 1998) is used, to order the trajectories:
(1) R > C > L. (2) To order the two sequences Sa, Sb with a common part S,
count the number of R in S. If it is even then order Sa, Sb according to the order
of a, b. If the number is odd then order Sa, Sb opposite to the order of a, b. Notice
that the map is decreasing on the R region. This structure can be generalized to
multi-modal maps and to higher dimensional systems.

Here we introduce a procedure to construct positive knots motivated by
symbolic dynamics associated to discrete dynamical systems. The constructed set
is shown to contain any positive knot corresponding to a periodic orbit of a discrete
dynamical system (Holmgren, 1996). It is proved that the constructed knots are
invariant under topological conjugation, up to period five, hence they can be used
to classify the associated discrete dynamical systems. An example is given to show
that topological conjugation failed to be an invariant for closed orbits of period
more than five. In fact knot theory and braid theory (Kauffman, 1996; Ahmed
et al., 1991) are interesting topics both mathematically, physically and biology.
Knots have been related to continuous dynamical systems (Ghrist et al., 1997;
Elrifai and Ahmed, 1995) and discrete dynamical systems (Ghrist et al., 1997;
Ahmed and Elrifai, 2001).

2. PRELIMINARIES

A knot is an embedding K : S1 → R3 on 1-sphere into 3-space. An arrow
along the knot diagram can orient knots, where positive and negative crossings
can be represented as in Fig. 1a, where Fig. 1b shows some kind of knots.

Braids (Birman, 1974) are those of Artin’s braid group Bn which can be
written as a word in powers of usual generators σ1, σ2, . . . , σn−1 with geometric
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Fig. 1.

presentation as in Fig. 2a. The elements of Bn can be regarded geometrically by
an arrangement of n-string running monotonically from top to bottom between
two parallel discs. The generators σi and σ−1

i represented as in Fig. 1a. One of the
most common relationship between knot theory and braid groups is the closure.
That is by connecting to top and bottom of each strand of the braid α to have α̂,
as in Fig. 2b.

A positive braid word in Bn, is an explicitly written word in σ1, σ2, . . . , σn−1.
A braid is called a positive permutation braid, ppb, if it can be drawn as a geometric
braid in which every pair of strings crosses at most once (Elrifai, 1988), write S+

n

for the set of positive permutation braids. If the braids α, βεS+
n induce the same

permutations on their strings, then α = β, and for each πεSn, the symmetric
group, there is a braid απεS+

n which induces that permutation (Fig. 3).

3. RESULTS

Algorithm 1. The procedure to construct positive knots is as follows: Draw a
number of points 1, 2, . . . , n equal to the period of the orbit. Then join the points

Fig. 2.
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Fig. 3.

in anyway to simulate the trajectory of the periodic orbit. This means that each
point is visited only once. Then as a braid no arcs cross more than once, hence it
is a ppb, and no loops are allowed, which means that only the 1-cycle permutation
braids are allowed. Find the positive element corresponding to such a trajectory,
then find the associated knot as closed braid. Take S+

n,1 for the set of all 1-cycle
positive permutation braids of order n. So if the period of the orbit is n, we have
(n − 1)! closed orbits. Hence we have the following results.

Corollary 1. K is a knot motivated by symbolic dynamics if and only if K = α̂,
for some αεS+

n,1 and for some positive integer n.

Now, according to the ordering rule by distributing the sequence W =
ω1ω2 . . . ω|W | with natural order 1, 2, . . . , p − 1, p and replacing shifted sequence
with corresponding natural order, we can obtain the dynamical permutation rule
i → σ (i), where σ (i) denotes the natural order of sequence which is obtained by
shift operation on initial sequence corresponding to natural order, which relates
the present construction with the work of Hao and Zheng (1998). Now consider
the following discrete dynamical system, where g ∗ h(t) = g(h(t)),

x(t + 1) = [1 − ax(t)] ∗ x(t), t = 1, 2, . . .

Algorithm 2. The periodic orbit is given by the symbolic sequence RLRC, fol-
lowing the trajectory they found that it follows according to the rule 1234. That the
point 1 is mapped onto the point 2, which is mapped onto point 3. While the point
3 is mapped onto the point 4, where point 1 is RLRC, point 2 is LRCR, point 3 is
RCRL and point 4 is CRLR. Using the ordering rule given before, it is direct to
see that 1 > 3 > 4 > 2. So the braid element, as in Fig. 4, represents the trefoil
knot. Notice that in their notation RLRC means RLRL RLRL RLRL. . .

Proposition 1. The periodic orbit (RLn)∞, n ≥ 1 correspond to the unknot.
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Fig. 4.

Proof: In the present constructions this orbit corresponds to the transition
123, . . . , n. The corresponding braid element is σn−1σn−2, . . . , σ2σ1, whose clo-
sure is the unknot, that is the knot which ambient isotopic to the circle. �

In general, knots constructed according to the given procedure are not invari-
ant under topological conjugation. In Elrifai and Benkhalifa (2004) introduced a
complete matrix invariant for all conjugation classes in S+

n , n ≤ 5, without restric-
tions on the cycle type of the permutation. Which implies that all periodic orbits
in our procedure of period n, n ≤ 5 are invariant under topological conjugation.
Also in Morton and Hadji (2004) proved that there is only one conjugation class
in S+

n,1 for the unknotted periodic orbits, as well as all positive permutation braids
in S+

n,1 which close to the trefoil knot are conjugate, for any integer n.

4. CALCULATIONS

The only possible knots which arise, as a closed braids, from S+
n,1, for n < 6,

are unknot, trefoil and figure eight knots. By a direct calculations we can find that:

(1) When n = 3, the only closed orbit is the unknot with permutations
(123), (132) and corresponding ppb representations σ2σ1, σ1σ2, respec-
tively.

(2) When n = 4, the unknot and trefoil are the possible closed or-
bits, where the unknot comes from the permutations (1234),
(1243), (1342), (1432) with corresponding ppb representations
σ3σ2σ1, σ2σ1σ3, σ1σ3σ2, σ1σ2σ3, respectively. While the trefoil comes
from the permutations (1324), (1423) with corresponding ppb repre-
sentations σ2σ1σ3σ2σ1, σ1σ2σ1σ3σ2, respectively.
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(3) When n = 5, the unknot, trefoil and figure eight knots are the possible
closed orbits, where the unknot comes from (12345), (12354), (12453),
(12543), (13452), (13542), (14532), (15432) the permutations. While
the trefoil comes from the permutations (12453), (12534), (13245),
(13254), (13524), (14253), (14352), (14523), (15342), (15423). But fig-
ure eight knot arises from (15324), (15243), (15234), (14325), (14235),
(13425).

(4) The two ppbs associated to the permutations (152643), (165324) ∈ S+
6,1

close to the same knot type as (2, 5) torus knot. So they represent the
same closed orbit. But their associated braids

α = σ1σ3σ2σ1σ5σ4σ3σ2σ1 and β = σ2σ4σ3σ2σ1σ5σ4σ3σ2

are not conjugate. Therefore α and β are not conjugate, in fact we
can show that by different ways. Applying the algorithm in Elrifai and
Benkhalifa (2004) on braids α2 and β2, we find their associated matrices
are not equal:

Aα2 =
(

4 5

5 4

)
, Aβ2 =

(
2 7

7 2

)
(1)

hence α2 and β2 are not conjugate, so that α and β are never be
conjugate. Let us consider the closures of α2 and β2 as in Fig. 4, both
are links of two components, where aij is the linking number between
the two components and aii is the self crossing of each component.

5. APPLICATION

The Lorenz model consists of the equations

ẋ = σ (y − x)
ẏ = rx − y − xz

ż = xy − bx

contents three parameters r , σ and b, representing respectively the Rayleigh num-
ber, the Prandtl number and a geometric ratio. Consider the system in a wide
r range at fixed σ = 10 and b = 8/3. The closed periodic orbits of the Lorenz
system have been studied by many authors (Birman and Williams, 1983; Elrifai,
1988, 1999). It is known that, for 0 < r < 1 the origin (0, 0, 0) is a globally stable
fixed point. It loses stability at r = 1. A one-dimensional unstable manifold and
a two-dimensional stable manifold come out from the unstable origin. The inter-
section of the two-dimension manifold with the Poincaré section will determine a
demarcation line in the partition of the two-dimension phase plane of the Poincaré
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map. For r > 1 there appears a pair of fixed points

C± = (±√
b(r − 1),±

√
b(r − 1), r − 1

)
.

These two fixed points remain stable until r reaches 24.74. Now to see Lorenz
system from the viewpoint of symbolic dynamics, we refer to Guckenheimer and
Williams (1979) where they introduced the geometric Lorenz model for the vicinity
of r = 28, which leads to symbolic dynamics of two letters.

Let us take a ∈ I and define the finite or infinite sequence

k(a) = k1(a), k2(a), k3(a), . . .

where

k(a) =



x if a is to the left of m

0 if a = m

y if a is to the right of m

and ki(a) =



x if f i(a) < m

0 if f i(a) = m

y if f i(a) > m

Then sequence k are lexicographically ordered by x < 0 < y. We refer to
Birman and Williams (1983) for the fact that the map a → k(a) is a 1-to-1 order
preserving correspondence between the point of the branch set and the lexico-
graphically ordering of the set of all sequence k0, k1, . . . such that each ki = x, y

or 0 and the sequence terminates with ki = 0. Hence the periodic orbits of the
flow ϕt , which arise when the points of R3 move simultaneously along trajectories
according to the time t , correspond 1-to-1 with the cyclic permutation classes of
finite aperiodic words in the free monoid generated by x and y.

Definition 1. The Lorenz knot holder is a branched two-manifold H with a
boundary in S3, consisting of one joining and one splitting chart put together, as
in Fig. 5, by sewing each bottom to exactly one top and vice versa. In the joining
chart, the lines come together along the branch line, where the lines leave the
splitting chart at the bottom.

Fig. 5.
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Fig. 6.

Example 1. According to the study above and the rule x < y, the
closed orbits in knot holders in Fig. 6a and b with aperiodic words
(xy)2x and x(yx)3 respectively. Also in point of view of the given
algorithm. This also implies that for the word (xy)2x we can write
1 → xyxyx, 2 → yx . . . xyx . . . , 3 → yxyx . . . x . . . , 4 → x . . . xyxy . . . , 5 →
xyx . . . xy . . ., while the word x(yx)3 has 1 → xyxyxyx . . . , 2 →
yx . . . xyxyx . . . , 3 → yxyx . . . xyx . . . , 4 → yxyxyx . . . x . . ., 5 → x . . . xyx

yxy . . ., 6 → xyx . . . xyxy . . . , 7 → xyxyx . . . xy . . .. The corresponding closed
orbits have the trefoil 31 and 51 knot types, that according to the tabulation in
Dale (1977), respectively.
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